A GA(TS) Hybrid Algorithm for Scheduling in Computational Grids
نویسندگان
چکیده
The hybridization of heuristics methods aims at exploring the synergies among stand alone heuristics in order to achieve better results for the optimization problem under study. In this paper we present a hybridization of Genetic Algorithms (GAs) and Tabu Search (TS) for scheduling in computational grids. The purpose in hybridizing these heuristics is to benefit the exploration of the solution space by a population of individuals with the exploitation of solutions through a smart search of the TS. Our GA(TS) hybrid algorithm runs the GA as the main algorithm and calls TS procedure to improve individuals of the population. We evaluated the proposed hybrid algorithm using different Grid scenarios generated by a Grid simulator. The computational results showed that the hybrid algorithm outperforms both the GA and TS for the makespan value but cannot outperform them for the flowtime of the scheduling.
منابع مشابه
Flow Shop Scheduling Problem with Missing Operations: Genetic Algorithm and Tabu Search
Flow shop scheduling problem with missing operations is studied in this paper. Missing operations assumption refers to the fact that at least one job does not visit one machine in the production process. A mixed-binary integer programming model has been presented for this problem to minimize the makespan. The genetic algorithm (GA) and tabu search (TS) are used to deal with the optimization...
متن کاملA Hybrid Approach for Fuzzy Just-In-Time Flow Shop Scheduling with Limited Buffers and Deteriorating Jobs
This paper investigates the problem of just-in-time permutation flow shop scheduling with limited buffers and linear job deterioration in an uncertain environment. The fuzzy set theory is applied to describe this situation. A novel mixed-integer nonlinear program is presented to minimize the weighted sum of fuzzy earliness and tardiness penalties. Due to the computational complexities, the prop...
متن کاملTask Scheduling Using Particle Swarm Optimization Algorithm with a Selection Guide and a Measure of Uniformity for Computational Grids
In this paper, we proposed an algorithm for solving the problem of task scheduling using particle swarm optimization algorithm, with changes in the Selection and removing the guide and also using the technique to get away from the bad, to move away from local extreme and diversity. Scheduling algorithms play an important role in grid computing, parallel tasks Scheduling and sending them to ...
متن کاملScheduling of a flexible flow shop with multiprocessor task by a hybrid approach based on genetic and imperialist competitive algorithms
This paper presents a new mathematical model for a hybrid flow shop scheduling problem with multiprocessor tasks in which sequence dependent set up times and preemption are considered. The objective is to minimize the weighted sum of makespan and maximum tardiness. Three meta-heuristic methods based on genetic algorithm (GA), imperialist competitive algorithm (ICA) and a hybrid approach of GA a...
متن کاملNature's Heuristics for Scheduling Jobs on Computational Grids
Computational Grid (Grid Computing) is a new paradigm that will drive the computing arena in the new millennium. Unification of globally remote and diverse resources, coupled with the increasing computational needs for Grand Challenge Applications (GCA) and accelerated growth of the Internet and communication technology will further fuel the development of global computational power grids. In t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009